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ABSTRACT

We investigate a novel cross-lingual multi-speaker text-to-speech
synthesis approach for generating high-quality native or accented
speech for native/foreign seen/unseen speakers in English and Man-
darin. The system consists of three separately trained components:
an x-vector speaker encoder, a Tacotron-based synthesizer and a
WaveNet vocoder. It is conditioned on 3 kinds of embeddings: (1)
speaker embedding so that the system can be trained with speech
from many speakers will little data from each speaker; (2) language
embedding with shared phoneme inputs; (3) stress and tone embed-
ding which improves naturalness of synthesized speech, especially
for a tonal language like Mandarin. By adjusting the various embed-
dings, MOS results show that our method can generate high-quality
natural and intelligible native speech for native/foreign seen/unseen
speakers. Intelligibility and naturalness of accented speech is low as
expected. Speaker similarity is good for native speech from native
speakers. Interestingly, speaker similarity is also good for accented
speech from foreign speakers. We also find that normalizing speaker
embedding x-vectors by L2-norm normalization or whitening im-
proves output quality a lot in many cases, and the WaveNet perfor-
mance seems to be language-independent: our WaveNet is trained
with Cantonese speech and can be used to generate Mandarin and
English speech very well.

Index Terms— cross-lingual, multi-speaker, text-to-speech,
speaker embedding, language embedding

1. INTRODUCTION

In traditional text-to-speech (TTS) synthesis methods [1], many sys-
tem components such as the grapheme-to-phoneme model, phoneme
duration model, segmentation model, fundamental frequency esti-
mation model and synthesis model are trained separately, and they
require expert domain knowledge to produce high-quality synthe-
sized speech. With the advance of deep learning, they are gradually
replaced by neural models. Deep Voice [2] presents a neural TTS
system which replaces each separate system component with a neu-
ral net-based model. The system can synthesize intelligible speech
in real time or much faster than real time. In contrast, Char2wav [3]
and Tacotron [4] and its improved version Tacotron2 [5] resort to a
totally end-to-end neural model1 that use an attention mechanism to
convert a sequence of text directly to its corresponding sequence of
vocoder features, from which speech audios may be generated us-
ing a vocoder. Char2Wav generates WORLD features [6] and uses

1Actually “end-to-end” here only means that both Char2Wav and
Tacotron generate vocoder features, not speech audios, from some represen-
tation of input texts.

SampleRNN [7] to generate speech, while Tacotron/Tacotron2 gen-
erates linear/mel spectrograms and uses the Griffin-Lim (GL) [8] and
WaveNet [9] vocoder, respectively. Tacotron 2 can synthesize natu-
ral speech comparable to genuine human speech.

Single-speaker neural TTS systems can be readily extended to
support multiple speakers voices. [10] takes the multi-task learning
approach and duplicates the output layer for each of its training
speakers so that each speaker is trained with its own speaker-
dependent output layer while sharing other hidden layers in the
model. Obviously, the model parameters in its output layer grow lin-
early with the number of training speakers. Multi-speaker Tacotron
[11] is introduced by conditioning Tacotron 2’s model on pre-trained
d-vector speaker embeddings so that new speakers can be enrolled
with a few seconds of speech. Similarly, Deep Voice 2 [12] and
Deep Voice 3 [13] extends Deep Voice to multi-speaker TTS. Unlike
Tacotron 2, Deep Voice 2 and 3 condition each layer of the model
with speaker embeddings which is jointly trained with the rest of
the TTS system. For example, Deep Voice 3 claims to support
2400 voices. However, enrollment of new speakers in [12] and [13]
will require additional training. VoiceLoop [14] uses a fixed-size
memory buffer to accommodate speaker-dependent phonological
information and facilitates multi-speaker synthesis by buffer shifts.
New speaker embeddings can be trained by an optimization proce-
dure while fixing the other model parameters. Neural Voice cloning
[15] introduces a similar speaker adaptation method where both
model parameters and speaker embeddings are fine-tuned with data
from the new speaker. Multi-lingual TTS further extends multi-
speaker TTS to support synthesis in more than one language. For
example, [16] introduces a cross-lingual TTS system in English
and Mandarin trained with IPA without language embedding. It
succeeds in synthesizing speech in two languages, however, it can
only synthesize native speech but not accented speech. It uses the
GL vocoder (instead of WaveNet or other neural-based high fidelity
vocoders) resulting in synthesized speech of lower quality.

In this paper, we investigate an approach to synthesize high-
quality speech2 that sounds like native speech or accented speech
spoken by native or foreign speakers of a language, who may be seen
or unseen during training of the TTS system. While we are prepar-
ing for this submission, we notice a new non-refereed publication
from Google [17] on arXiv recently which shares many ideas in our
system. Nonetheless, there are the following notable differences:

• Most importantly, our results are reproducible as we use pub-
licly available training corpora: English from LibriSpeech
and Mandarin from SurfingTech, while the system in [17] is
trained on proprietary data.

2Some audios synthesized with different settings are available at
https://zliuar.github.io/CLMSTTS/.
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Fig. 1. Multi-lingual multi-speaker TTS system using speaker embedding, language embedding and tone/stress embedding.

• [17] aims at synthesizing speech with training speakers’
voices; thus, their training data consists of few speakers
(some are professional voice actors) but each has tens of
hours of speech. On the contrary, we train our system on
hundreds of speakers with less than 25 minutes of speech
from each speaker. We believe our system is more generaliz-
able to new speakers and we report results on unseen speakers
while [17] does not.

• Both our system and theirs employ shared phonemes for
inputs and speaker embeddings, language embedding, and
stress and tone embeddings. However, we use the state-
of-the-art x-vector for speaker embedding while theirs is
d-vector. We expect our synthesized speech will be better in
terms of speaker similarity, especially for unseen test speaker.

• Our model is simpler with no residual encoding nor adversar-
ial training. Instead, we investigate on the effect of various
normalization methods on the speaker embedding vectors for
enhancing the intelligibility, naturalness and speaker similar-
ity of the synthesized speech.

• We also investigate the effect of training the WaveNet vocoder
with a third language (Cantonese) to synthesize speech of the
intended languages (English and Mandarin) in the system.

The rest of the paper is organized as follows. Section 2 describes
the details of our model architecture. Section 3 introduces experi-
ments conducted and their corresponding settings. It also shows the
MOS results on the naturalness, intelligibility and speaker similarity
of the synthesized speech from our system. Finally, Section 4 gives
our concluding remarks.

2. MODEL STRUCTURE

Fig. 1 shows our multi-lingual multi-speaker TTS system.

2.1. Input Representation: Phoneme, Tone, Stress Embeddings

Instead of character embedding in [3, 4, 5], we use phoneme em-
bedding which has been proved to generate more natural speech. A
shared phoneme set is created by mapping all pinyin to ARPABET
phonemes, with the exceptions of pinyin phonemes j, q and x which
are treated as distinct phonemes as no good ARPABET mappings
are found. We separately represent tone and stress as 7-D one-hot
embeddings concatenated to phoneme embedding. No tone and no
stress are sharing the same representation.

2.2. Speaker Encoder

The speaker encoder use x-vectors described in [18] as speaker
embeddings. X-vectors are derived from a TDNN-based speaker
discriminative model that maps variable-length utterances to fixed-
dimensional speaker embeddings. X-vectors are trained using Kaldi
[19] with the standard experiment settings. We extract x-vectors
from the output of 6th hidden layer in the TDNN.

2.3. Mel-spectrogram Synthesizer

The mel-spectrogram synthesizer is implemented based on multi-
speaker Tacotron 2 [11] with the same architecture and parameter
settings. We concatenate speaker embeddings and language embed-
ding to the encoder context output as in [11]. In our pre-experiments,
we have tried linear addition instead of concatenation. We have also
tried to input language embedding before or after the convolutional
layers in the text encoder by either addition or concatenation. Both
do not lead to any significant improvement.

2.4. WaveNet

WaveNet [9] is an auto-regressive sample-by-sample raw audio syn-
thesizer. We construct the WaveNet with 30 layer of dilated causal
convolutions. In our work, we train the WaveNet with 8-bit mu-law
quantization3 using the CUSENT Cantonese corpus and demonstrate
that it can still synthesize high-quality and natural speech in both En-
glish and Mandarin.

3. EXPERIMENTS & RESULTS

We train our model on 4 open-source datasets in three languages:
(1) The “clean” set in Librispeech (LS) [20] consists of 1172 En-
glish speakers, each with 25 minutes of speech; (2) SurfingTech (ST)
[21] is a Mandarin corpus which has 855 speakers, and 10 minutes
of speech per speaker. We further randomly select 800 speakers’
data for training; (3) CUSENT (CU) [22] is a Cantonese corpus of
20 hours of speeh from 68 training speakers; (4) Aishell (AI) [23]
is a Mandarin corpus consisting of 150 hours of speech from 340
training speakers. We use all data to train the x-vector speaker en-
coder, and use Librispeech and SurfingTech data to train the synthe-
sizer. CUSENT is used to train WaveNet only. Librispeech data are
segmented by forced alignment to shorter audios (2s-12s) upon si-
lences that are longer than 0.3s. Block Threshold denoising [24] is

3Training a WaveNet with 8-bit mu-law outputs allows much faster con-
vergence and the output quality is still very good.



Fig. 2. No-norm Fig. 3. L2-norm Fig. 4. Whitening

used to denoise the segmented Librispeech. We use Google Trans-
late to transform text transcriptions to pinyin which are then mapped
to ARPABET phonemes. Forced alignment is performed on Surfin-
gTech to label significant short pauses in its speeches.

3.1. Speaker Verification Evaluation

We conduct objective speaker verification (SV) evaluations on x-
vector speaker embeddings with increasing number of training
speakers. Enrolment utterances are 3 minutes long and test utter-
ances vary from 5–12s. We first test 400-D i-vectors, 64/128/512-D
x-vectors on Librispeech SV, and the results are shown in Table 1.
In our experiments, even though the EERs differs from 1 to 3.25
for various models, we found the TTS systems using the i-vectors
or 128-D x-vectors can generate better speech with very similar
quality. In contrast, although 64-D x-vectors give the best SV EER,
they produce audios of poorer quality in our TTS system. It seems
that embeddings that give better SV EER is no guarantee for better
synthesized audios. At the end, we choose the 128-D x-vectors
for our speaker embeddings. We further investigate the x-vector
embedding with more training speakers. Table 2 shows SV EER
on a separate test set for systems trained with increasing number of
speakers from various corpora. Results show adding more speakers
from other datasets does not further reduce the SV EER. We visu-
alize these x-vectors using t-SNE in Fig. 4. It shows that speakers
from different datasets form their own clusters without interfering
each other. We perform L2-norm and whitening normalization to
the x-vectors. L2-norm is supposed to preserve cosine similarity and
whitening will remove correlations among the dimensions. Fig. 3
and 4 shows the normalized x-vectors.

3.2. Subjective Evaluation

We evaluate our TTS system subjectively with mean opinion score
(MOS) tests. First, we train an English multi-speaker TTS system as
our baseline model with 128-D x-vectors trained on Librispeech. We
construct three multi-lingual TTS models with unnormalized, L2-
norm normalized and whitened 128-D LS+CU+ST+AI x-vectors.
We perform MOS evaluation on the four models on intelligibility
(I), naturalness (N) and speaker similarity (S) with Absolute Cate-
gory Rating Scale from 1–5 with 0.5 increments. Table 3 lists test
speakers where English speakers are a subset of test speakers in [11]

System Dim Train set Speakers SV-EER
i-vector 400 LS 1172 3.25
x-vector 64 LS 1172 1.00
x-vector 128 LS 1172 1.50
x-vector 512 LS 1172 1.25

Table 1. Librispeech SV EER (%) for various speaker embeddings.

Train set Speakers LS CU ST AI
LS, CU 1240 0.75 0 – –

LS, ST, AI 2312 0.75 – 0 0.5
LS, CU, ST, AI 2380 0.75 0 0 0.5

Table 2. Effect of increasing number of training speakers on Lib-
rispeech SV EER (%) using 128-D x-vector.

Seen 446 1246 2136 7517 1A 109A 126I 156A
Gender M F M F M M F F
Dataset LS LS LS LS ST ST ST ST
Unseen 1320 2300 3570 3575 7I 39I 56A 64A
Gender M M F F F M M F
Dataset LS LS LS LS ST ST ST ST

Table 3. MOS test speakers: Gender: Male (M) and Female (M);
Dataset: LS and ST

and Mandarin speakers are randomly selected. Their native/accented
utterances are synthesized from 4 VCTK [25] English texts and 4
Aishell Mandarin texts to form an evaluation pool of 192 synthe-
sized utterances for the multi-lingual model and 32 for the baseline
model. An evaluation set of 100 utterances is constructed with 16
ground truth utterances, 12 synthesized utterances from the base-
line model, and 24 synthesized utterances from each multi-lingual
model. Samples are randomly selected from each speech pool with
gender-balanced seen/unseen speakers. The 72 synthesized utter-
ances from multi-lingual models consists of generated utterances
in foreigner’s accented English (FAE), foreigner’s native English
(FNE) and native English (NE), and the corresponding FAM, FNM
and NM (for Mandarin samples), and they are presented in that order
lest the raters learn the content from the more intelligible speeches.



Ten human raters are recruited from our speech lab, who all speak
Mandarin as their mother language and are proficient in English.

Table 4 shows MOS scores on ground truth speech and synthe-
sized speech from the baseline model on I/N/S. We find that some
raters rate synthesized speech more intelligible than ground truth
speech. It turns out some of the ground truth utterances from LS
and ST are drawn from texts containing words that are not famil-
iar to some raters. Ground truth speech in LS is rated as extremely
natural but lower speaker similarity than ST because of emotion and
speaker style changes in reading audio books. ST speeches are rated
as less natural because of their various accents different from stan-
dard Mandarin. Our baseline model obtains a high score in natu-
ralness for both seen and unseen speakers, and speaker similarity
between moderately similar and very similar.

Table 5 shows intelligibility MOS on unseen speakers for multi-
lingual models. We observe that raters rate FAE and FAM bad/poor.
However, they regret when they evaluate the synthesized native
speech (which is highly intelligible) and learn the actual texts.
FNE and FNM speech with no normalization of the x-vectors are
rated bad/poor because the model does not produce clear speech
in this case and most of FNM speech do not stop properly. Both
L2-norm and whitening normalization result in high-quality synthe-
sized speech for unseen speakers that are rated between good and
extremely intelligible.

Table 6 shows naturalness MOS results. We observe whitening
helps generate very natural native English and foreign native Man-
darin for Librispeech speakers. The naturalness of foreign accented
speech is bad though L2-norm normalization helps produce better
results. Table 7 and 8 show the speaker similarity MOS results on
seen and unseen speakers, respectively. As expected, the results on
seen speakers are better than those on unseen speakers. However,
we find a very interesting phenomenon for the case of Mandarin:
speaker similarity on FAM from English speakers is better than that
on NM from native Mandarin speakers.

In summary, the MOS results on intelligibility, naturalness and
speaker similarity of synthesized speech from our model are better
for English than Mandarin. There are two plausible explanations:
(a) the quality of Librispeech English speech is higher than that of
the SurfingTech Mandarin speech which also come from speakers
with various accents; (b) the raters are all native Chinese who may
be more critical in assessing the quality of speech of their mother
tongue.

4. CONCLUSION

This paper presents a novel multi-lingual multi-speaker TTS ap-
proach which performs no worse than its mono-lingual baselines.
With x-vector whitening, it can produce very natural native English
and Mandarin compared to the ground truth speech with moderate
speaker similarity on unseen speakers. The model can successfully
clone foreigners’ voices to speak another language like a native in-
telligibly and naturally (FNE and FNM results). It can also generate
accented speech for foreign speakers. We further find that a WaveNet
trained on Cantonese can generate high-quality speech in Mandarin
and Engish; it seems WaveNet training is language-independent.
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Intelligibility Naturalness Similarity

GT-E 4.47 ± 0.22 4.90 ± 0.14 4.33 ± 0.24

GT-M 4.68 ± 0.18 4.30 ± 0.24 4.86 ± 0.15

Baseline seen 4.96 ± 0.06 4.25 ± 0.26 3.82 ± 0.27

Baseline unseen 4.50 ± 0.19 4.11 ± 0.32 3.40 ± 0.33

Table 4. MOS on ground truth speech and synthesized speech from
baseline models.

Model\Cases FAE FNE NE
No-norm 2.08 ± 0.23 3.50 ± 0.52 4.67 ± 0.18
L2-norm 2.29 ± 0.35 4.92 ± 0.10 4.54 ± 0.21

Whitening 1.92 ± 0.27 4.25 ± 0.24 4.92 ± 0.07
Model\Cases FAM FNM NM

No-norm 1.75 ± 0.23 2.83 ± 0.25 4.77 ± 0.14
L2-norm 1.88 ± 0.29 4.46 ± 0.17 4.71 ± 0.15

Whitening 1.42 ± 0.19 4.08 ± 0.44 4.67 ± 0.13

Table 5. Intelligibility MOS with unseen speakers.

Model\Cases FAE FNE NE
No-norm 1.88 ± 0.22 3.79 ± 0.28 4.33 ± 0.22
L2-norm 1.96 ± 0.09 4.08 ± 0.19 4.08 ± 0.23

Whitening 1.47 ± 0.16 3.46 ± 0.26 4.58 ± 0.19
Model\Cases FAM FNM NM

No-norm 1.88 ± 0.38 1.92 ± 0.26 4.18 ± 0.23
L2-norm 2.25 ± 0.36 3.17 ± 0.48 4.21 ± 0.24

Whitening 1.75 ± 0.28 3.58 ± 0.33 4.33 ± 0.20

Table 6. Naturalness MOS on unseen speakers.

Model\Cases FAE FNE NE
No-norm 2.62 ± 0.28 1.94 ± 0.14 3.75 ± 0.38
L2-norm 2.69 ± 0.23 2.75 ± 0.29 4.19 ± 0.35

Whitening 3.36 ± 0.24 3.06 ± 0.21 3.81 ± 0.25
Model\Cases FAM FNM NM

No-norm 4.06 ± 0.19 1.43 ± 0.25 4.08 ± 0.20
L2-norm 3.75 ± 0.18 1.75 ± 0.28 3.12 ± 0.29

Whitening 3.94 ± 0.16 1.38 ± 0.15 3.47 ± 0.43

Table 7. Speaker similarity MOS with seen speakers.

Model\Cases FAE FNE NE
No-norm 2.69 ± 0.37 2.62 ± 0.32 3.46 ± 0.30
L2-norm 2.46 ± 0.34 2.29 ± 0.22 3.37 ± 0.32

Whitening 2.19 ± 0.34 2.08 ± 0.35 3.50 ± 0.23
Model\Cases FAM FNM NM

No-norm 3.21 ± 0.25 1.25 ± 0.14 3.32 ± 0.41
L2-norm 3.75 ± 0.21 2.08 ± 0.27 3.17 ± 0.29

Whitening 3.75 ± 0.14 1.67 ± 0.15 3.33 ± 0.32

Table 8. Speaker similarity MOS with unseen speakers.
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